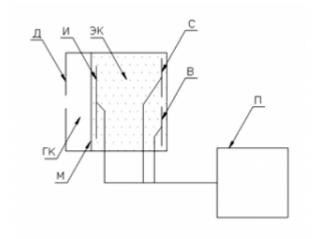
# МФN-6 ячейка электрохимическая на оксид азота 0-2000 ppm



**Область применения:** Безопасность работ/Контроль ПДКр.з. вредных веществ


**Наименования контролируемых компонентов:** NO Азота оксид

# Описание

Ячейка электрохимическая МФN-6 предназначена для работы в составе газоанализаторов по определению оксида азота в воздухе рабочей зоны. Применяется в газоанализаторах МАК-2000, Газотест, КГА-8. Гарантийный срок службы 2 года.

## Устройство и принцип действия

Электрохимическая ячейка представляет собой трехэлектродную систему, помещенную в камеру с электролитом ЭК



- И измерительный электрод,
- В вспомогательный электрод,
- С сравнительный электрод,
- ГК газовая камера,
- **ЭК** камера с электролитом,
- Д диафрагма,
- М мембрана измерительного электрода,
- **П** потенциостат

Для обеспечения нормальной работы ячейки к ее электродам подключается электронное устройство – потенциостат **П**. Со стороны анализируемой среды перед полупроницаемой мембраной **М** измерительного электрода **И** находится диафрагма **Д**, ограничивающая поток анализируемого газа к измерительному электроду **И**. Диафрагма **Д** и полупроницаемая мембрана **М** конструктивно оформляют газовую камеру **ГК**. В некоторых типах электрохимических ячеек газовая камера **ГК** заполнена фильтрующим веществом, удаляющим из анализируемого газа компоненты, которые могут исказить аналитический результат.

Анализируемый газ диффундирует через диафрагму **Д** к катализатору измерительного электрода **И**, на котором претерпевает электрохимические превращения. Генерируемый ток при этом пропорционален концентрации анализируемого газа. Электролит, потенциал измерительного электрода, катализатор измерительного электрода и материал фильтрующего вещества выбираются исходя из условий оптимального анализа.

Перед установкой электрохимической ячейки, проводник, соединяющий электроды «И» и «С», должен быть удален. Электрохимическая ячейка достигает своих нормированных характеристик после нахождения при потенциале в течение не менее 24 ч.

#### Особенности:

Чувствительность  $75\pm15$  нА/ppm Величина «шума» <1 ppm Нелинейность выходного сигнала <5 % Время выхода на показания (Т 09) <40 с Величина фонового сигнала - 0-15 ppm Изменение фонового сигнала ( $\pm20...+40$  °C) <10 ppm Диапазон рабочих давлений нормальное  $\pm10$  % Изменение выходного сигнала за 1 мес <1 % Срок службы не менее 3 лет Потенциал измерительного электрода - 0,30 В Емкость фильтра для поглощения «мешающих» газов - 250000 ppmхч

## Таблица перекрестной чувствительности

| Газ, 100 ppm | NO  | SO <sub>2</sub> | $NO_2$ | H₂S | CO | H <sub>2</sub> |
|--------------|-----|-----------------|--------|-----|----|----------------|
| Сигнал, ррт  | 100 | 0               | 0      | 0   | 0  | 0              |

# Технические характеристики

| Диапазоны измерений         | NO Азота оксид    | 0-2000 ppm |  |  |
|-----------------------------|-------------------|------------|--|--|
| Погрешность измерений       | NO Азота оксид    |            |  |  |
| Принцип работы              | Электрохимический |            |  |  |
| Диапазон рабочих температур | -20+50 °C         |            |  |  |